Match the following two coloumns
Column $-I$ | Column $-II$ |
$(A)$ Electrical resistance | $(p)$ $M{L^3}{T^{ - 3}}{A^{ - 2}}$ |
$(B)$ Electrical potential | $(q)$ $M{L^2}{T^{ - 3}}{A^{ - 2}}$ |
$(C)$ Specific resistance | $(r)$ $M{L^2}{T^{ - 3}}{A^{ - 1}}$ |
$(D)$ Specific conductance | $(s)$ None of these |
$A \to q, B \to s, C \to r, D \to p$
$A \to q, B \to r, C \to p, D \to s$
$A \to p, B \to q, C \to s, D \to r$
$A \to p, B \to r, C \to q, D \to s$
List $-I$ | List $-II$ | ||
$A$. | Coefficient of Viscosity | $I$. | $[M L^2T^{–2}]$ |
$B$. | Surface Tension | $II$. | $[M L^2T^{–1}]$ |
$C$. | Angular momentum | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | Rotational Kinetic energy | $IV$. | $[M L^0T^{–2}]$ |
Position of a body with acceleration '$a$' is given by $x = K{a^m}{t^n},$ here $t$ is time. Find dimension of $m$ and $n$.
If Surface tension $(S)$, Moment of Inertia $(I)$ and Planck’s constant $(h)$, were to be taken as the fundamental units, the dimensional formula for linear momentum would be
If $R$ and $L$ represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency